A family of A-stable Runge–Kutta collocation methods of higher order for initial-value problems
نویسندگان
چکیده
We consider the construction of a special family of Runge–Kutta (RK) collocation methods based on intra-step nodal points of Chebyshev–Gauss–Lobatto type, with A-stability and stiffly accurate characteristics. This feature with its inherent implicitness makes them suitable for solving stiff initial-value problems. In fact, the two simplest cases consist in the well-known trapezoidal rule and the fourth-order Runge–Kutta–Lobatto IIIA method. We will present here the coefficients up to eighth order, but we provide the formulas to obtain methods of higher order. When the number of stages is odd, we have considered a new strategy for changing the step size based on the use of a pair of methods: the given RK method and a linear multistep one. Some numerical experiments are considered in order to check the behaviour of the methods when applied to a variety of initial-value problems.
منابع مشابه
2-stage explicit total variation diminishing preserving Runge-Kutta methods
In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...
متن کاملA general family of pseudo two - stepRunge - Kutta methods Nguyen
The aim of this paper is to design a new family of numerical methods of arbitrarily high order for systems of rst-order diierential equations which are to be termed pseudo two-step Runge-Kutta methods. By using collocation techniques, we can obtain an arbitrarily high-order stable pseudo two-step Runge-Kutta method with any desired number of implicit stages in retaining the two-step nature. In ...
متن کاملOne-Step Piecewise Polynomial Galerkin Methods for Initial Value Problems*
A new approach to the numerical solution of systems of first-order ordinary differential equations is given by finding local Galerkin approximations on each subinterval of a given mesh of size h. One step at a time, a piecewise polynomial, of degree n and class C°, is constructed, which yields an approximation of order 0(A*") at the mesh points and 0(A"+1) between mesh points. In addition, the ...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کامل